China OEM Custom Design Plastic Injection Molded Molding Parts for Electric Tool Handles

Product Description

Introduction

As a leading plastic injection molding company, Moldor Plastic has achieved rich experiences of design, engineering, and manufacturing value-added plastic mold and supplying molded products to customers all over the world. Equipped with state of the art machines and skilled workers, we provide you the high-quality products at very competitive price.

Our CHINAMFG are widely used in Auto Accessories, Electronics, Household appliances, Medical Devices, Game Players, Mechanical devices and other fields.

QUALITY FIRST & SERVICE FIRST & CUSTMER FIRST is our aim,MAKE EVERY PROJECT A SUCCESS is  our mission.We sincerely hope to be your trustworthy partner for long-termcooperation.

Product Details

 

Mold Shaping Customized Plastic Injection Molding
Plastic Material PP, PC, PS, POM, PE, ABS, etc. as per customers’ requierment
Surface Finish Mirror Polish, Texture, Sandblast, Mate, Spray Paint, Silk screen and etc.
Plastic Material PP, PC, PS, POM, PE, ABS, etc. as per customers’ requierment
Delivery Time 5-8 days after samples confirmed
Color Provide Pantone Color Code or sample
Packaging Standard Export Carton

  

 

 

Custom Your Own CHINAMFG in CHINAMFG !

According to your drawings or samples, we can provide one-stop solutions service from designing, prototyping, molds 
making, processing, spraying, assembling, inspecting, packaging to delivering, everything will be managed to the 
smallest detail. 

If you have products or ideas that require injection mold & molding, CHINAMFG would like to serve you. Our knowledgeable engineers and designers will offer suggestions on how to manufacture your product to allow for a professional 
look as well as for ease of manufacturing.

Please kindly email us your inquiry,  and our professional team is committed to providing personal service at the 
lowest possible prices to you.Your any inquiry is welcomed and will be replied soon.
 

Related Products

MOLDOR PLASTIC Advantage:

In-house mold design and building capabilities to improve work efficiency.
 

NDA agreement can be signed to protect customers’ idea 

and design.

Professional sales team. Good communication skills and 

after service.

Professional design team, mold maker engineer. OEM/

ODM service.

Professional QC and R&D teams to assure high quality.

Delivery on time.

 

We can do more than you expected…
 

 

 

1. Manufacturing experience for over 15 years.
2. Customized designs and services are accepted.
    Professional design team and engineering team offer 
    technical support.
3. Manufacturing process control. 
4. Small volume production or mass production is available.

                    5. Trained workers and professional QC team to assure the 
                         product quality.
                    6. Inspection report and material test certificates are 
                        available CHINAMFG requests.
                    7. Standard: HASCO or as customer’s requirement.
……

Clic the picture to see more products

Factory Capability

 

Our Service

Step 1: Product Design: We provide product design service as customers’ request.
Step 2: Mold Design: We communicate & exchange the detail information with our customers to make a good mold design.
Step 3: Mold Making: Manufacturing in-house, we send the mold processing photos and videos to customers.
Step 4: Mass Production: We start plastic injection parts production after customers confirm samples.
Step 5: Assembly: We can supply assembly service as customers’ requests.
Step 6: Value added Service: Available, such as screen printing, plating, custom packaging and etc.

Packaging & Shipping

FAQ

Q1:Are you a trading company or factory?
A1:We are factory.

Q2:What type of information is required for quoting a molding project?
A2:Please send your drawings or sample to us.

Q3:How long do you take to build a mold?
A3:The production timeline depends on your specific needs, normally the lead time is 25-45days.

Q4:How small or large of a plastic part will you produce?
A4:Our machine capabilities cover a range from 60-ton to 500-ton clamping forces.

Q5:What kind of steel do you use for plastic moldings?
A5:We can use any type of steel appointed by customer or popular in the market.Such as P20,718,8407,NAK80,H13,S136,

DIN 1.2738,DIN 1.2344,etc.

Q6:What types of materials can be molded by your injection products?
A6:Polystyrene,ABS,PET,TPR,TPU,PVC,Nylon,Acetal,Polypropylene,Polyethylene, Polycarbonates and etc.

Q7:Do you offer secondary service such as assembly, packaging or painting?
A7:Yes,such as assembly, painting, tapping, ultrasonic welding, trimming, sorting, customized packaging and etc.

Q8:If I have an existing tooling, could you use it to mold my project?
A8:Most certainly, if existing tooling is available, we can use them.

Q9:Can you mold around inserts or metal components?
A9:We can do insert molding with just about any metal and non-metal components.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Plastic Type: Thermoplast
Plastic Form: Granule
Molding Method: Injection Molding
Plastic Color: Black, Red, Yellow, White, or Others
Mold Runner: Cold or Hot Runner
Surface Finish: Polish, Texture, Matt, Smooth, Can Be Customized
Customization:
Available

|

What factors influence the design and tooling of injection molded parts for specific applications?

Several factors play a crucial role in influencing the design and tooling of injection molded parts for specific applications. The following are key factors that need to be considered:

1. Functionality and Performance Requirements:

The intended functionality and performance requirements of the part heavily influence its design and tooling. Factors such as strength, durability, dimensional accuracy, chemical resistance, and temperature resistance are essential considerations. The part’s design must be optimized to meet these requirements while ensuring proper functionality and performance in its intended application.

2. Material Selection:

The choice of material for injection molding depends on the specific application and its requirements. Different materials have varying properties, such as strength, flexibility, heat resistance, chemical resistance, and electrical conductivity. The material selection influences the design and tooling considerations, as the part’s geometry and structure must be compatible with the selected material’s properties.

3. Part Complexity and Geometry:

The complexity and geometry of the part significantly impact its design and tooling. Complex parts with intricate features, undercuts, thin walls, or varying thicknesses may require specialized tooling and mold designs. The part’s geometry must be carefully considered to ensure proper mold filling, cooling, ejection, and dimensional stability during the injection molding process.

4. Manufacturing Cost and Efficiency:

The design and tooling of injection molded parts are also influenced by manufacturing cost and efficiency considerations. Design features that reduce material usage, minimize cycle time, and optimize the use of the injection molding machine can help lower production costs. Efficient tooling designs, such as multi-cavity molds or family molds, can increase productivity and reduce per-part costs.

5. Moldability and Mold Design:

The moldability of the part, including factors like draft angles, wall thickness, and gate location, affects the mold design. The part should be designed to facilitate proper flow of molten plastic during injection, ensure uniform cooling, and allow for easy part ejection. The tooling design, such as the number of cavities, gate design, and cooling system, is influenced by the part’s moldability requirements.

6. Regulatory and Industry Standards:

Specific applications, especially in industries like automotive, aerospace, and medical, may have regulatory and industry standards that influence the design and tooling considerations. Compliance with these standards regarding materials, dimensions, safety, and performance requirements is essential and may impact the design choices and tooling specifications.

7. Assembly and Integration:

If the injection molded part needs to be assembled or integrated with other components or systems, the design and tooling must consider the assembly process and requirements. Features such as snap fits, interlocking mechanisms, or specific mating surfacescan be incorporated into the part’s design to facilitate efficient assembly and integration.

8. Aesthetics and Branding:

In consumer products and certain industries, the aesthetic appearance and branding of the part may be crucial. Design considerations such as surface finish, texture, color, and the inclusion of logos or branding elements may be important factors that influence the design and tooling decisions.

Overall, the design and tooling of injection molded parts for specific applications are influenced by a combination of functional requirements, material considerations, part complexity, manufacturing cost and efficiency, moldability, regulatory standards, assembly requirements, and aesthetic factors. It is essential to carefully consider these factors to achieve optimal part design and successful injection molding production.

How do innovations and advancements in injection molding technology influence part design and production?

Innovations and advancements in injection molding technology have a significant influence on part design and production. These advancements introduce new capabilities, enhance process efficiency, improve part quality, and expand the range of applications for injection molded parts. Here’s a detailed explanation of how innovations and advancements in injection molding technology influence part design and production:

Design Freedom:

Advancements in injection molding technology have expanded the design freedom for part designers. With the introduction of advanced software tools, such as computer-aided design (CAD) and simulation software, designers can create complex geometries, intricate features, and highly optimized designs. The use of 3D modeling and simulation allows for the identification and resolution of potential design issues before manufacturing. This design freedom enables the production of innovative and highly functional parts that were previously challenging or impossible to manufacture using conventional techniques.

Improved Precision and Accuracy:

Innovations in injection molding technology have led to improved precision and accuracy in part production. High-precision molds, advanced control systems, and closed-loop feedback mechanisms ensure precise control over the molding process variables, such as temperature, pressure, and cooling. This level of control results in parts with tight tolerances, consistent dimensions, and improved surface finishes. Enhanced precision and accuracy enable the production of parts that meet strict quality requirements, fit seamlessly with other components, and perform reliably in their intended applications.

Material Advancements:

The development of new materials and material combinations specifically formulated for injection molding has expanded the range of properties available to part designers. Innovations in materials include high-performance engineering thermoplastics, bio-based polymers, reinforced composites, and specialty materials with unique properties. These advancements allow for the production of parts with enhanced mechanical strength, improved chemical resistance, superior heat resistance, and customized performance characteristics. Material advancements in injection molding technology enable the creation of parts that can withstand demanding operating conditions and meet the specific requirements of various industries.

Process Efficiency:

Innovations in injection molding technology have introduced process optimizations that improve efficiency and productivity. Advanced automation, robotics, and real-time monitoring systems enable faster cycle times, reduced scrap rates, and increased production throughput. Additionally, innovations like multi-cavity molds, hot-runner systems, and micro-injection molding techniques improve material utilization and reduce production costs. Increased process efficiency allows for the economical production of high-quality parts in larger quantities, meeting the demands of industries that require high-volume production.

Overmolding and Multi-Material Molding:

Advancements in injection molding technology have enabled the integration of multiple materials or components into a single part through overmolding or multi-material molding processes. Overmolding allows for the encapsulation of inserts, such as metal components or electronics, with a thermoplastic material in a single molding cycle. This enables the creation of parts with improved functionality, enhanced aesthetics, and simplified assembly. Multi-material molding techniques, such as co-injection molding or sequential injection molding, enable the production of parts with multiple colors, varying material properties, or complex material combinations. These capabilities expand the design possibilities and allow for the creation of innovative parts with unique features and performance characteristics.

Additive Manufacturing Integration:

The integration of additive manufacturing, commonly known as 3D printing, with injection molding technology has opened up new possibilities for part design and production. Additive manufacturing can be used to create complex mold geometries, conformal cooling channels, or custom inserts, which enhance part quality, reduce cycle times, and improve part performance. By combining additive manufacturing and injection molding, designers can explore new design concepts, produce rapid prototypes, and efficiently manufacture customized or low-volume production runs.

Sustainability and Eco-Friendly Solutions:

Advancements in injection molding technology have also focused on sustainability and eco-friendly solutions. This includes the development of biodegradable and compostable materials, recycling technologies for post-consumer and post-industrial waste, and energy-efficient molding processes. These advancements enable the production of environmentally friendly parts that contribute to reducing the carbon footprint and meeting sustainability goals.

Overall, innovations and advancements in injection molding technology have revolutionized part design and production. They have expanded design possibilities, improved precision and accuracy, introduced new materials, enhanced process efficiency, enabled overmolding and multi-material molding, integrated additive manufacturing, and promoted sustainability. These advancements empower part designers and manufacturers to create highly functional, complex, and customized parts that meet the demands of various industries and contribute to overall process efficiency and sustainability.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China OEM Custom Design Plastic Injection Molded Molding Parts for Electric Tool Handles  China OEM Custom Design Plastic Injection Molded Molding Parts for Electric Tool Handles
editor by CX 2024-01-09